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1. Introduction 

Current aerodynamic research for guided munitions has primarily been focused on 
improving the maneuverability of projectiles to perform at a wider range of 
engagement and operating conditions.1–6 Moreover, these efforts focus on 
increasing the control authority while concurrently reducing adverse wake effects 
from movable lifting surfaces.7–9  Extensive research has shown significant control 
authority detriment due to the flow interactions between the downwash of trailing- 
edge vortices from control surfaces impacting the tail fins downstream.10–19 To 
address these issues, the US Army Research Laboratory (ARL) is investigating 
techniques that can increase maneuverability by both augmenting lift and 
mitigating the vortex-fin flow interactions. Viable techniques will expand the 
capabilities of guided projectiles, through increased accuracy and precision, against 
both stationary and moving targets.  

One area of research that has demonstrated a significant increase in lift for airfoils 
has been unsteady aerodynamics.20–22 Specifically, the benefit of oscillatory 
pitching and plunging airfoils have been extensively studied.23–29 This dynamic 
motion can result in higher lift as well as delay the onset of stall. The unsteady lift 
augmentation is the product of an airfoil undergoing rapid change in angle of attack, 
which causes a leading-edge vortex to be produced and then shed downstream 
along the suction side of the airfoil. The vortex increases suction pressure as it rolls 
downstream, temporarily increasing lift. This periodic lift augmentation is 
generally referred to as dynamic stall.30–33 A comprehensive collection of studies 
have examined dynamic stall and its application. However, to the best of the 
author’s knowledge, none have studied the viability of using dynamic stall for 
increased performance of canard-controlled projectiles. Furthermore, very little 
work has been performed investigating the effect of dynamic stall on the 
development of the tip vortex. The majority of these studies focus on either 2-D 
vortex street34–36 (i.e., spanwise rollers) or rotorcraft applications, specifically 
studying the interaction of rotor blades of a helicopter impacting vortices shed by 
preceding rotor blades (i.e., blade-vortex interactions).37–40 

The purpose of the present study is to determine if unsteady pitch-oscillating 
canards could be a viable solution to increase the control authority of guided 
projectiles. The effect of a pitch-oscillating canard for lift augmentation and its 
effectiveness in reducing the strength of the tip vortex to reduce adverse flow 
interactions downstream is investigated. The computational study is split into 2 
investigations. First, lift augmentation for an unsteady 2-D airfoil at M∞ = 0.5 is 
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considered. Second, both lift enhancement and tip vortex mitigation of an unsteady 
3-D canard at M∞ = 0.2 and 0.5 are investigated. In both studies, the effect of 
reduced frequency and amplitude of the oscillation on dynamic stall was an area of 
interest.  

2. Technical Approach 

The computational investigation is split as follows: 1) a 2-D airfoil (National 
Advisory Committee for Aeronautics [NACA] 0012) study to reduce the number 
of parameters (i.e., reduced frequency and amplitude) for the prescribed ramp-
oscillation that enhances lift at M∞ = 0.5 and 2) a 3-D rectangular planform canard 
(NACA 0015 cross-sectional airfoil) associated with typical dimensions used for 
canard-controlled projectiles at M∞ = 0.5 and 0.2. In addition to assessing lift 
augmentation, the effect of the dynamic motion on the development of the tip 
vortex was investigated. 

A ramp-oscillation motion was prescribed for each computational case (see Section 
3.1). The dynamic ramp motion increases the angle of attack of the lifting surface 
linearly while superimposing a high-frequency oscillation about the quarter-chord 
of the airfoil. The mathematical relationship of the rotation of the lifting surface 
with respect to the freestream velocity, about the quarter-chord, as a function of 
time, is described in Eq. 1. 

 𝛼𝛼(𝑡𝑡) =  𝜔𝜔1𝑡𝑡 + 𝐴𝐴 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜔𝜔2𝑡𝑡), (1) 

where α(t) is the angle of attack as a function of time, t, ω1, and ω2 are the rate and 
frequency of the linear ramp and oscillation, respectively, and A is the amplitude of 
the oscillation. This dynamic motion was chosen in order to model a practical 
command for canard-controlled projectiles. Furthermore, the dynamic motion was 
selected to exploit the full dynamic motion effect as found in previous unsteady 
aerodynamic studies,20–33 namely the superposition of rapidly increasing angle of 
attack to delay stall (ramp) and periodic lift augmentation due to classic dynamic 
stall (oscillation). Through the combination of these 2 mechanisms, it was 
hypothesized that the same dynamic effect could be achieved with less amplitude 
of oscillation in both augmenting lift as well as delaying stall. The rate and 
frequency of the dynamic motion was selected based on a reduced frequency value, 
k. As defined in most studies on unsteady aerodynamics, the reduced frequency is 
mathematically expressed in Eq. 2. 

 𝑘𝑘𝑗𝑗 = 𝜔𝜔𝑗𝑗𝑐𝑐
2𝑈𝑈∞

 �
𝑗𝑗=1,2

, (2) 
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where c is the chord length of the airfoil, U∞ is the freestream velocity, and j denotes 
either the linear ramp rate, 1, or oscillation frequency, 2. For the present study, the 
reduced frequency of the linear ramp rate was held constant at k1 = 0.005. This 
value was selected based on reference values of usual actuator driven canard-
controlled rate (e.g., 5–13 Hz). Note that the dynamic stall effect of enhancing lift 
is not expected to originate from the linear ramp motion due to the relatively low 
reduced frequency value. The dynamic stall effect is dependent on the reduced 
frequency of the oscillation and is most noticeable when the value is greater than 
0.05. The reduced frequency for oscillatory motion was studied at k2 = 0.5 and 1.0. 
Furthermore, 4 amplitudes, A = 0°, 0.5°, 1.5°, and 5°, were investigated for the  
2-D case, whereas 3 amplitudes, A = 0°, 1.5°, and 5°, were studied for the 3-D case. 
For both computational cases, the linear ramp motion (i.e., pitch oscillation set to 
zero amplitude [A = 0°]), was selected for the baseline case. Table 1 summarizes 
the test matrix for both computational cases. 

Table 1 Computational test matrix 

Case M∞ k1 k2 A  
(°) 

2-D airfoil 
(NACA 0012) 

0.5 0.005 0.5, 1.0 0, 0.5, 1.5, 5 

3-D canard 
(NACA 0015) 

0.2, 0.5 0.005 0.5, 1.0 0, 1.5, 5 

2.1 Geometries and Computational Domains 

2.1.1 Two-Dimensional Airfoil 

The 2-D airfoil used for the initial simulations, shown in Fig. 1, has a chord length, 
c = 1 m, with a cross-sectional profile of a NACA 0012 airfoil. The computational 
domain was meshed with GAMBIT v2.4 from ANSYS Fluent, a C-grid mesh 
containing approximately 55,000 cells, and has an approximate radial distance of 5 
chord lengths from the leading edge of the airfoil to the domain surfaces. The first 
cell spacing was set to 4 × 10–6 m to ensure y+ values were at or below 1.0 along 
the surface of the airfoil for accurate boundary layer prediction.  
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Fig. 1 Two-dimensional airfoil geometry with mesh 

2.1.2 Three-Dimensional Canard 

The 3-D canard model, shown in Fig. 2, is an unswept, finite canard with a chord 
length, c = 0.021 m, a semi-span, b/2 = 0.063 m, and a cross-sectional NACA 0015 
airfoil profile. The computational domain was meshed with MIME from Metacomp 
Technologies.41 The rectangular domain spans an approximately 48 chord lengths 
equidistant in both streamwise and normal directions from the leading edge of the 
canard. The width of the domain is approximately 22 chord lengths from the root 
of the canard to the outboard domain surface. A mesh density cylinder was used to 
refine the mesh in the region near the canard tip and wake region to resolve the tip 
vortex. The origin of the density box was aligned to the canard tip, with a radius of 
approximately 2 chord lengths, spanning approximately 10 chord lengths 
downstream (Fig. 2b). The total mesh size was approximately 33 M cells, consisting 
of triangular surface cells, with prism layers used along the surface and tetrahedral 
cells for the rest of the domain. The first cell wall spacing of the prism layers was 
set to 2 × 10–6 m to ensure y+ values of less than 1 along the surface of the canard. 

 

Fig. 2 Three-dimensional canard and computational domain 
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2.2 Computational Fluid Dynamics (CFD) Solution Technique 

The commercially available code, CFD++ v15.1.1 by Metacomp Technologies, 
Inc.,42 was used for all simulations. The 2-D or 3-D compressible Reynolds-
averaged Navier-Stokes (RANS) equations were numerically solved to compute the 
flow solution for each respective case. Both steady-state and transient simulations 
were employed. 

Simulations were performed on the Cray XC40 (Excalibur) and Cray XC30 
(Lightning) supercomputers located at ARL’s Department of Defense 
Supercomputing Resource Center (DSRC) at Aberdeen Proving Ground, Maryland, 
and US Air Force Research Laboratory DSRC at Wright-Patterson Air Force Base, 
Ohio, respectively. 

For all steady-state simulations, the solution was advanced toward convergence 
using a point-implicit time-integration scheme with local time-stepping defined by 
the Courant-Friedrichs-Lewy (CFL) number. A linear ramping schedule was used 
to gradually increase the CFL number from 1 to 50 over the first 100 iterations, 
after which the CFL remained constant until convergence was reached. The 
multigrid W-cycle method with a maximum of 4 cycles and a maximum of 20 grid 
levels were used to accelerate convergence. Implicit temporal smoothing was 
applied for the increased stability, which is especially useful where strong transients 
arise. The spatial discretization function was a second-order, upwind scheme using 
a Harten-Lax-van Leer-Contact Riemann solver and Metacomp’s multi-
dimensional Total-Variation-Diminishing flux limiter. Convergence for the total 
forces and moments was typically achieved in a few thousand iterations, with 
residuals reducing at 5 orders or more in magnitude.  

For all transient RANS simulations, the dual-time step method was employed with 
the point-implicit time-integration scheme using a global time step and an inner 
time step. For the transient planar pitching simulations, the global time step of the 
transient simulation was selected based on 100 steps per cycle of pitch-oscillation 
with 20 inner iterations per global time step. The number of global time steps were 
selected based on the time it took the dynamic ramp schedule to reach an angle of 
attack of approximately 25°.  

For the 2-D simulation, a realizable k-ε 2-equation turbulence model was used, 
whereas for the 3-D simulation, Menter’s k-ω Shear Stress Transport  
2-equation model was used. For the current study, initialization of the turbulence 
transport was completed by setting the turbulence intensity to 3% and the turbulent-
to-molecular viscosity ratio to 50, as the length scale was not known. The choice 
of turbulence model may be an important factor in numerical modeling of the tip 
vortex and will need to be further investigated. 
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2.3 Flowfield and Boundary Conditions 

All computations were completed using a free-stream temperature and pressure of 
288.15 K and 101,325 Pa, respectively. The study was conducted at M∞ = 0.5  
(170 m/s) and 0.2 (68 m/s). The wind-axis coordinate system was used such that 
streamwise velocity, U, is positive downstream; cross-stream velocity, V, is 
positive toward the sidewall (inboard direction); and normal velocity, W, is positive 
upward. The free-stream velocity and chord length of the geometries were used to 
nondimensionalize important parameters and coordinates, denoted by an asterisk 
(*). The domain was initialized using free-stream conditions everywhere. The far-
field boundary was set as “characteristic-based” inflow/outflow. This boundary 
condition takes the specified free-stream conditions and solves a Riemann problem 
at the boundary using the supplied data as a virtual state outside the domain. The 
surfaces of the airfoil and canard were modeled as adiabatic, no-slip, viscous walls 
with solve-to-wall methodology. The sidewall for the 3-D domain was modeled as 
an inviscid slip wall. For the transient simulations, the dynamic motion was 
prescribed through a file-based single-axis rotation, which allowed for the entire 
grid to rotate as a function of time.  

3. Results and Discussion 

3.1 Two-Dimensional Airfoil 

The 2-D NACA 0012 airfoil case was first investigated to determine if the dynamic 
stall effect could be achieved from the prescribed dynamic ramp motion at M∞  = 
0.5. The dynamic ramp schedule of the airfoil at 2 reduced frequencies (k2 = 0.5 
and 1.0) and 4 amplitudes (A = 0.0, 0.5, 1.5, and 5.0) is presented in Figs. 3a and 
3b, respectively. The dynamic ramp schedule is the combination of a linear ramp 
superimposed with a high-frequency oscillation. For this study, the linear rate is 
held constant, while the oscillation frequency was varied. The high-frequency 
oscillation begins when the angle of attack of the airfoil is α = 5°. This angle was 
selected to ensure that the airfoil never experiences a negative angle of attack during 
the ramp schedule. The baseline case is denoted by the dashed black line.
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Fig. 3 Prescribed dynamic ramp motion for the 2-D airfoil at k2 = 0.5 (a) and 1.0 (b) 

The sectional lift coefficient, CL, of the airfoil was computed in CFD++ for all 
parameter combinations. The equation for the section lift coefficient for the 2-D 
airfoil case is presented in Eq. 3. 

 𝐶𝐶𝐿𝐿 = 𝐿𝐿
1
2𝜌𝜌∞𝑈𝑈∞

2 𝑐𝑐  
 , (3) 

where L is the lift force, ρ∞ and U∞ are the free-stream density and velocity, 
respectively, and c is the chord length of the airfoil. To compare the lift values 
between the actuated (i.e., oscillatory) cases with the baseline for a given angle of 
attack, the lift coefficient was plotted against the equivalent mean angle of attack 
(i.e., baseline angle of attack). The lift coefficient as a function of angle of attack 
for the baseline (black dashed line) and the dynamic motion cases is presented in 
Fig. 4. The baseline case shows the typical linear increase of lift with increasing 
angle of attack until approximately α = 9°. At this angle the flow begins to separate 
from the upper surface of the airfoil, which causes the lift curve to become 
nonlinear. At α = 14°, the airfoil stalls, characterized by a peak followed by a 
precipitous drop in lift. Further increase in angle of the attack results in unsteady, 
nonlinear lift along with a large increase in drag. For the investigated configuration, 
the lift coefficient oscillates since the airfoil is pitch oscillating about the mean 
angle of attack (Figs. 4a and 4c). The period of the oscillation is correlated to the 
reduced frequency of the prescribed dynamic motion. For all amplitudes, the lower 
reduced frequency, k2 = 0.5, exhibits a longer period as well as larger fluctuations 
in lift than the higher reduced frequency, k2 = 1.0, case. The larger the amplitude 
of oscillation, the larger the fluctuation in lift. For both cases, the lift fluctuation 
remains sinusoidal about the mean angle of attack until approximately α = 9°, when 
the peaks of the lift curve become deformed. The lift fluctuation behaves sinusoidal 
longer for the lower reduced frequency case than the higher-frequency case. These 
fluctuations in lift continue with increase in angle of attack.  
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Fig. 4 Lift coefficient of dynamic airfoil as a function of equivalent mean angle of attack, 
unfiltered (a, c) and filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b) and 
1.0 (c–d), M∞ = 0.5 

The large fluctuations in lift make it difficult to distinguish the full effect of the 
dynamic motion in enhancing lift; therefore, the lift data for both cases was filtered 
and is presented in Figs. 4b and 4d. The lift curves for the actuated cases were 
filtered using a low pass filter to remove the oscillation due to the dynamic motion. 
A fast Fourier transform algorithm was used to analyze the frequency components 
of the lift curve and to perform the filter. From the filtered data for both reduced 
frequencies, the smallest amplitude case, A = 0.5°, seems to have little to no effect 
on enhancing the lift of the airfoil, whereas the largest amplitude case, A = 5°, 
shows considerable lift enhancement at higher angles of attack compared with the 
baseline. Furthermore, the A = 1.5° and 5° cases do not exhibit the precipitous drop 
in lift at α = 14°, therefore indicating that stall was successfully delayed. The results 
from the 2-D case suggest that lift augmentation is possible using a dynamic 
motion. The favorable results from the 2-D case warranted further exploration of 
the dynamic motion effect for 3-D configurations. 
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3.2 Three-Dimensional Canard 

The 3-D canard (NACA 0015 airfoil) case was studied to investigate the dynamic 
stall effect on a more-realistic control surface with dimensions that are typical of 
canard-controlled projectiles. The favorable results from the 2-D case were used to 
help determine the computational test matrix. Following the same procedure as the 
2-D case, a prescribed ramp-oscillation dynamic motion was simulated for the 3-D 
canard case.  

3.2.1 Unsteady Lift Enhancement 

Similar to the 2-D airfoil case (Fig. 3), the dynamic ramp schedule of the 3-D canard 
is a linear ramp superimposed with high-frequency oscillation beginning when the 
angle of attack of the airfoil equals α = 5°. Two reduced frequencies (k2 = 0.5 and 
1.0) at 3 amplitudes (A = 0.0, 1.5, and 5.0) were simulated at 2 free-stream Mach 
numbers, M∞ = 0.5 and 0.2. The lift coefficient for the 3-D canard case was 
computed similarly to the 2-D case (Eq. 3) and is mathematically expressed in  
Eq. 4.  

 𝐶𝐶𝐿𝐿 = 𝐿𝐿
1
2𝜌𝜌∞𝑈𝑈∞

2 𝑆𝑆  
 , (4) 

where S is the planform area of the canard (i.e., 𝑆𝑆 = 𝑐𝑐 ∙ 𝑏𝑏/2). The lift coefficient as 
a function of angle of attack for the baseline (black dashed line) and the dynamic 
motion cases at M∞ = 0.5 and 0.2 are presented in Fig. 5 and Fig. 6, respectively. 
Similar to the 2-D case, the baseline lift distribution for the 3-D case increases 
linearly until α = 10° then nonlinearly until reaching a peak at approximately α = 
14° (Fig. 5). Note that the peak value of lift is less than the peak achieved for the 
2-D airfoil case. The reduction in lift is due to the downwash generated by the tip 
vortex. Furthermore, there is a less-pronounced drop in lift after stall. The unfiltered 
data (Fig. 5a and 5c) shows fluctuations in lift at both reduced frequencies and 
increasing fluctuations with increasing amplitude of oscillation.  

Following the same procedure as the 2-D case, the lift coefficient data was filtered 
to remove the frequency associated with the prescribed oscillation frequency. The 
filtered data (Fig. 5b and 5d) show that the dynamic motion is ineffective in 
increasing lift at small angles of attack but is able to increase lift past the stall angle, 
thus delaying the onset of stall. Although the data have been filtered, there is still 
an oscillation of lift present at higher angles of attack, suggesting that the inherent 
nonlinear behavior of poststall is still present for the actuated cases. The results 
indicate that the amplitude of the oscillation is a more-sensitive parameter for lift 
enhancement than the effect of reduced frequency of the oscillation. The 
augmentation of lift is more noticeable for the larger amplitude. The results suggest 



 

Approved for public release; distribution is unlimited. 
10 

that the higher reduced frequency, k2 = 1.0, for A = 1.5°, is more effective in 
enhancing lift than the lower reduced frequency (Fig. 5d). Moreover, the effect of 
reduced frequency is less noticeable for the higher amplitude, A = 5°. The results 
suggest that unsteady lift enhancement is possible for canard-controlled projectiles. 
However, achieving high-amplitude (e.g., >1.5°) oscillations at the given reduced 
frequency could prove to be impractical. 

 
Fig. 5 Lift coefficient of dynamic canard as a function of equivalent mean angle of attack, 
unfiltered (a, c) and filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b) and 
1.0 (c–d), M∞ = 0.5 

The lift coefficient as a function of equivalent mean angle of attack for all parameter 
combinations at M∞ = 0.2 is presented in Fig. 6. Compared with that of the higher-
speed case, M∞ = 0.5, the baseline lift distribution for the M∞ = 0.2 case increases 
linearly until α = 14° then nonlinearly until reaching a peak at approximately α = 
19° (Fig. 6). The lower-speed case stalls at a larger angle than the higher-speed case 
at the same reduced frequency, k1 = 0.005, while undergoing linear ramp motion. 
For the actuated cases, similar behavior to that of the higher-speed case is exhibited; 
the unfiltered data show large oscillation in lift for the canard that is magnified 
while undergoing prescribed large amplitude oscillation (i.e., A = 5°). The lift 
coefficient distribution increases proportionally to the prescribed dynamic motion 
at lower angles of attack. However, it seems to exhibit nonlinear behavior poststall. 
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Furthermore, the lower reduced frequency causes the canard to achieve larger lift 
values poststall than the higher reduced frequency at the same amplitude (Fig. 6a). 
As described previously, the lift coefficient data were filtered to remove the 
frequency associated with the prescribed oscillation and are presented in Figs. 6b 
and 6d. As was observed for the higher-speed case, the dynamic motion is 
ineffective in increasing lift at small angles of attack. However, it is able to delay 
the onset of stall. For all cases, the larger amplitude, A = 5°, is more effective in 
augmenting lift at higher angles of attack. 

 
Fig. 6 Lift coefficient of dynamic canard as a function of equivalent mean angle of attack, 
unfiltered (a, c) and filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b) and 
1.0 (c–d), M∞ = 0.2 

The influence of the tip vortex is evident through the reduction in peak lift 
coefficient of the 3-D case compared with the peak achieved for the 2-D case. The 
vortex strength increases with angle of attack, creating downwash that effectively 
reduces lift while increasing drag of the canard. In addition to the lift detriment, the 
tip vortex trails downstream, affecting the performance of control surfaces in the 
wake of the canard. Therefore, it is of high interest to investigate the effect of 
dynamic motion on the tip vortex. 
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3.2.2 Tip Vortex Mitigation 

The effect of pitch oscillation on the development of the tip vortex was simulated 
using a modified ramp-oscillation motion. Similar to the previous prescribed 
motion, this motion superimposes a high-frequency oscillation on a linear ramp. 
However, unlike the previous prescribed motion, the modified motion performs the 
high-frequency oscillation when the canard reaches α = 10°. Furthermore, when the 
oscillation begins, the motion is held at a mean value of α = 10°, which results in a 
motion in which pitch oscillates about α = 10°. The prescribed dynamic ramp 
schedule for the baseline (A = 0°) and actuated cases (A = 1.5° and 5°) at a reduced 
frequency of k2 = 1.0, at M∞ = 0.5, is presented in Fig. 7. This modified dynamic 
motion is mathematically expressed in Eq. 5. 

 𝛼𝛼(𝑡𝑡) =   �
𝜔𝜔1𝑡𝑡 if α ≤ 10°

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔2𝑡𝑡) + 10° if α > 10° . (5) 

 
Fig. 7 Prescribed dynamic motion of 3-D canard for tip vortex mitigation at k2 = 1.0,  
M∞ = 0.5 

The tip vortex was qualitatively assessed using contour slices of the domain near 
the canard tip. A plane of nondimensional vorticity magnitude for all combinations 
near the canard tip (y/c = 0.1, or 2 mm, inboard from the tip) at M∞ = 0.5 undergoing 
pitch oscillation about α = 10° at k2 = 0.5 and 1.0 is presented in the following 
videos, Figs. 8–11. 
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CONTOU~4.MP4
 

Fig. 8 Contour of time-accurate nondimensional vorticity magnitude near canard tip  
(y/c = 0.1 inboard from tip) undergoing pitch-oscillation about α = 10° at an amplitude of  
A = 1.5° and reduced frequency k2 = 0.5 at M∞ = 0.5 

 

CONTOU~3.MP4
 

Fig. 9 Contour of time-accurate nondimensional vorticity magnitude near canard tip  
(y/c = 0.1 inboard from tip) undergoing pitch-oscillation about α = 10° at an amplitude of  
A = 1.5° and reduced frequency k2 = 1.0 at M∞ = 0.5 
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CONTOU~1.MP4
 

Fig. 10 Contour of time-accurate nondimensional vorticity magnitude near canard tip  
(y/c = 0.1 inboard from tip) undergoing pitch-oscillation about α = 10° at an amplitude of  
A = 5.0° and reduced frequency k2 = 0.5 at M∞ = 0.5 

 

CONTOU~2.MP4
 

Fig. 11 Contour of time-accurate nondimensional vorticity magnitude near canard tip  
(y/c = 0.1 inboard from tip) undergoing pitch-oscillation about α = 10° at an amplitude of  
A = 5.0° and reduced frequency k2 = 1.0 at M∞ = 0.5 

Clearly, the development of the tip vortex is affected due to actuation. The pitch-
oscillation causes an oscillation in vorticity concentration downstream. To fully 
analyze and compare the development of the tip vortex, the flow solution was time-
averaged over the last cycle of oscillation for all parameter combinations. A plane 
of nondimensional vorticity magnitude for all combinations near the canard tip  
(y/c = 0.1, or 2 mm, inboard from the tip) at M∞ = 0.5 and 0.2 is presented in  
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Figs. 12 and 13, respectively. The qualitative results indicate that the development 
of the tip vortex downstream for both speeds, M∞ = 0.5 and 0.2, are almost identical.  

 

Fig. 12 Contour of time-averaged (over the last oscillation cycle) nondimensional vorticity 
magnitude near canard tip (y/c = 0.1 inboard from tip) for baseline (a), a = 1.5° (b, d) and  
A = 5° (c, e) at reduced frequencies k2 = 0.5 (b–c) and 1.0 (d–e), M∞ = 0.5 
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Fig. 13 Contour of time-averaged (over the last oscillation cycle) nondimensional vorticity 
magnitude near canard tip (y/c = 0.1 inboard from tip) for baseline (a), a = 1.5° (b, d) and  
A = 5° (c, e) at reduced frequencies k2 = 0.5 (b–c) and 1.0 (d–e), M∞ = 0.2 

The time-averaged vorticity magnitude for the baseline case at both speeds show 
the development of a vortex that trails far downstream (Figs 12a and 13a). The 
vortex is characterized by a concentration of increased vorticity magnitude, which 
remains coherent downstream. Farther downstream, the vorticity concentration 
diffuses due to viscosity. For all combinations, there is a clear reduction in vorticity 
magnitude when the canard undergoes dynamic motion. Because of the pitch 
oscillating motion, the vorticity magnitude is less, and the vortex is less coherent 
(Figs. 12b–e and 13b–e). The radial vorticity influence increases in size farther 
downstream most likely due to increased viscous diffusion. The larger amplitude 
of oscillation is more effective in reducing the magnitude but causes the vortex 
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influence to increase radially (Figs. 12c and 12e, and 13c and 13e). The effect of 
reduced frequency is evident in the shape of the wake flow from the canard. The 
vorticity magnitude concentration appears as a standing wave in which the nodes 
of the wave are associated with high concentrations of vorticity. Moreover, since 
the higher reduced frequency is twice the lower reduced frequency value, the wave 
length of the vorticity concentration wave of the higher reduced frequency is half 
the length of the lower reduced frequency actuated case.  

In addition to vorticity magnitude, the turbulent kinetic energy (TKE) was 
investigated downstream of the canard tip. The development of a tip vortex is 
associated with an increase of the TKE due to 2 mechanisms: 1) the introduction of 
an unsteady coherent flow structure and 2) the random velocity fluctuations present 
in the mean shear flow of the tip vortex core. The normalized TKE (TKE*) is 
defined as 

 𝑇𝑇𝑇𝑇𝑇𝑇∗ =  1
2
�𝑢𝑢′𝑢𝑢′+𝑣𝑣′𝑣𝑣′+𝑤𝑤′𝑤𝑤′�

𝑈𝑈∞2
 , (6) 

where u’, v’, and w’ are the fluctuating components of velocity obtained from 
Reynolds decomposition of the velocity field. The time-averaged, nondimensional 
TKE* for all parameter combinations near the canard tip at M∞ = 0.5 and 0.2 is 
presented in Figs. 14 and 15, respectively. As previously observed for vorticity 
magnitude, the TKE field for all combinations at both speeds, M∞ = 0.5 and 0.2, 
are qualitative similar. The baseline case shows high concentration of TKE 
downstream of the canard tip due to the formation of the vortex. There is a higher 
concentration of TKE closer to the trailing edge for the higher speed; however, the 
region is larger radially for the lower speed. At the lower speed, the tip vortex 
exhibits more unsteadiness, evident by large regions of TKE farther downstream 
compared with the higher-speed case. Farther downstream, for both speeds, the 
TKE diffuses due to viscosity. The effect of actuation is shown through the 
distribution of the TKE concentration downstream. Similar to the vorticity field, 
the shape of the TKE region of the tip vortex is dependent on the actuation 
frequency. The results show that actuation causes TKE to diffuse sooner 
downstream compared with the baseline. Moreover, increasing the amplitude of 
actuation augments diffusion, which is shown to be more effective than increasing 
actuation frequency.  
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Fig. 14 Contour of time-averaged (over the last oscillation cycle) nondimensional TKE, near 
canard tip (y/c = 0.1 inboard from tip) for baseline (a), A = 1.5° (b, d) and A = 5° (c, e) at 
reduced frequencies k2 = 0.5 (b–c) and 1.0 (d–e), M∞ = 0.5 
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Fig. 15 Contour of time-averaged (over the last oscillation cycle) nondimensional TKE, near 
canard tip (y/c = 0.1 inboard from tip) for baseline (a), A = 1.5° (b, d) and A = 5° (c, e) at 
reduced frequencies k2 = 0.5 (b–c) and 1.0 (d–e), M∞ = 0.2 

The time-averaged slices provide a qualitative assessment of the tip vortex; 
however, a more quantitative approach is necessary to fully understand the effect 
of the dynamic motion on the tip vortex wake flow. Since there was no observed 
qualitative difference between M∞ = 0.5 and 0.2 cases in the development of the tip 
vortex, only the M∞ = 0.5 case was further explored.  

To quantify the tip vortex, contour slices were obtained downstream of the trailing 
edge tip of the canard. From the time-averaged flow solution, a total of 11 contour 
slices, ranging from x/c = 0 to x/c = 10, spaced evenly every x/c = 1, were studied. 
The effectiveness of pitch oscillation on mitigating the tip vortex was studied by 
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identifying and detecting vortices in the selected contour slices. Many techniques 
are available to characterize vortices in flows.43–47 In the present case, 5 parameters 
were investigated: 1) peak vorticity magnitude, 2) Q-criterion, 3) circulation,  
4) tangential velocity, and 5) vortex core radius. Vortices are often identified in 
flows by regions of high vorticity. However, high-vorticity regions are also present 
in parallel shear flows where no vortices are present. Therefore, the Q-criterion was 
developed to help define vortices in flows as spatial regions where the vorticity 
tensor dominates the rate of strain. The Q-criterion, Q, is mathematically expressed 
in Eq. 6. 

 𝑄𝑄 = 1
2

(‖𝜴𝜴2‖ −  ‖𝑺𝑺2‖) > 0, (6) 

where Ω and S are the vorticity tensor and rate of strain tensor, respectively. The 
peak value of Q was used to identify the center of the vortex and set as the origin 
for the contour slices. In addition to the Q-criterion, the tangential velocity 
distribution downstream of the canard was computed to quantify the induced 
velocity due to the tip vortex. The tangential velocity was computed by converting 
the cross-stream velocity components into polar coordinates. The tangential 
velocity, Vθ, is expressed in Eq. 7. 

  𝑉𝑉𝜃𝜃 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃) −𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝜃𝜃), (7) 

where V and W are the cross-stream and normal velocity components, respectively, 
and θ is the rotation angle about the center of the vortex.  

Figure 16 presents the nondimensional vorticity, Q-criterion, and tangential 
velocity for all oscillation amplitudes at x/c = 2 downstream of the canard tip at a 
reduced frequency of k2 = 1 and at M∞ = 0.5. As was found in Fig. 12, the tip vortex 
from the baseline case results in a coherent structure indicated by a high 
concentration of vorticity near the center of the vortex (Fig. 16a). The Q-criterion 
value shows the isolated regions of rotation similar to the vorticity field (Fig. 16d). 
The tangential velocity contour shows a typical vortex-structure concentration of 
high velocity symmetric about the center of the vortex, which defines the vortex 
core radius and low velocity within the core. Outside the core, the velocity reduces 
asymptotically in the radial direction (Fig. 16g). The effect of actuation is 
noticeable for both A = 1.5° and A = 5° oscillations (Figs. 16b, 16e, 16h, and  
16c, 16f, and 16i, respectively). The vorticity field shows a reduction in magnitude 
stretched in the normal direction compared with the baseline case (Fig. 16b and c). 
Moreover, the larger amplitude case shows 2 concentrations of vorticity 
approximately symmetric about the cross-stream direction. The Q-criterion shows 
a considerable reduction in magnitude and is skewed in the normal direction  
(Figs. 16e and 16f). The tangential velocity show that actuation causes the vortex 
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to become distorted, depicted by the asymmetric concentrations of velocity about 
the vortex core (Fig. 16h). The results indicate an increase in the radius of the vortex 
core. Furthermore, the wake flow structure for the larger amplitude case is no longer 
a coherent vortex (Fig. 16i). Interestingly, although the vorticity and tangential 
velocity magnitude are considerably less than the baseline for both actuated 
combinations, there is greater influence of tangential velocity in the radial direction 
(Figs. 16h and 16i). The results prove that the tip vortex obeys conservation of 
angular momentum.  

 
Fig. 16 Contours of time-averaged nondimensional vorticity (a–c), q-criterion (d–f), and 
tangential velocity (g–i) at x/c = 2 downstream of canard tip for baseline (a, d, and g), a = 1.5°  
(b, e, and h), and a = 5° (c, f, and i) case at reduced frequency, k2 = 1.0, M∞ = 0.5 

Expanding the analysis to all downstream locations, distributions of vorticity 
magnitude and tangential velocity for all parameter combinations are presented in 
Figs. 17 and 18, respectively. The distributions are presented at each downstream 
location along the centerline in both spanwise (z*, represented by solid lines) and 
cross-stream (y*, represented by dashed lines) directions of the cut plane between 
z* and y* = –1 to 1. The vorticity distribution defines the profile of vorticity 
concentration normal to the cut plane, typically exhibiting a peak at the center of 
the vortex while decreasing asymptotically in the radial direction. Furthermore, the 
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tangential velocity distributions show a linear region near the center, radially 
increasing until achieving a maximum at the edge of the vortex, defining the core 
radius, and then asymptotically decreases.  

 
Fig. 17 Distributions of time-averaged nondimensional vorticity magnitude along centerline 
in both spanwise (z*, solid) and cross-stream (y*, dashed) directions at x/c = 1 to 10 
downstream of canard tip for baseline (a), a = 1.5° (b, d) and 5.0° (c, e), at reduced frequencies, 
k2 = 0.5 (b–c) and 1.0 (d–e), at M∞ = 0.5 
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Fig. 18 Distributions of time-averaged nondimensional tangential velocity along centerline 
in both spanwise (z*, solid) and cross-stream (y*, dashed) directions at x/c = 1 to 10 
downstream of canard tip for baseline (a), a = 1.5° (b, d) and 5.0° (c, e), at reduced frequencies, 
k2 = 0.5 (b–c) and 1.0 (d–e), at M∞ = 0.5 

The baseline distributions of both the vorticity magnitude and tangential velocity 
show symmetry in both cross and spanwise directions (Figs. 17a and 18a). As 
expected, the peak vorticity values are within the vortex core, whereas the 
tangential vorticity reaches a maximum at the edges of the vortex core. 
Furthermore, the magnitude of vorticity and tangential velocity is inversely 
proportional to downstream distance, x/c. Compared with the baseline, all actuated 
combinations show significant decreases in magnitude for both vorticity and 
tangential velocity at each given downstream location (Fig. 17b–d). Moreover, as 
the vorticity peak drops, the radial influence increases, obeying conservation of 
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angular momentum. In actuated cases, both vorticity magnitude and tangential 
velocity distributions show asymmetry along each cross-stream direction as well as 
along the streamwise direction at different downstream locations, suggesting that 
the vortex core moves as the vortex advects downstream (Figs. 17b–d and  
Figs. 18b–d).  

Increasing the amplitude of pitch-oscillation causes a greater reduction in 
magnitude and increase in radial influence for both vorticity and tangential velocity 
(Figs. 17c and 17e, and Figs. 18c and 18e). The distributions of tangential velocity 
show that the larger amplitude oscillation case significantly disrupted the 
development of the tip vortex, resulting in negligible values of tangential velocity 
past x/c = 7 downstream of the canard tip (Figs. 18c and 18e). The effect-reduced 
frequency is not as noticeable as amplitude; however, the peak values of vorticity 
magnitude and tangential velocity downstream are dependent on the wave length 
of the standing wave wake flow, as similarly shown in Fig. 12. To clearly quantify 
the effect of the multiple actuation combinations on the development of the tip 
vortex, the peak values of the parameters to characterize a vortex, as identified 
previously, was explored.  

Figure 19 presents the time-averaged nondimensional peak values of vorticity 
magnitude, Q-criterion, circulation, tangential velocity, and vortex core radius at 
10 downstream locations from the canard tip. Figure 19 identifies the peak values 
and circulation within the area y* = –1 to 1, z* = –1 to 1 about the vortex center at 
each downstream location. The strength of a vortex can be characterized through 
circulation, or the flux of vorticity. The maximum vortex core radius is defined as 
the distance from the center of the vortex to the radial location of peak tangential 
velocity. 
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Fig. 19 Line plots of time-averaged nondimensional peak vorticity (a), tangential velocity 
(b), circulation (c), Q-criterion (d), and vortex core radius (e) at x/c = 1 to 10 downstream of 
canard tip for baseline, A = 1.5° , and A = 5° cases at reduced frequencies, k2 = 0.5 and 1.0, at 
M∞ = 0.5 

For all cases, the peak vorticity value is inversely proportional to downstream 
location (Fig. 19a). The vorticity decays due to viscosity. Compared with the 
baseline, pitch oscillating the canard causes the peak vorticity value to significantly 
decrease at all downstream locations. The increase in amplitude of the oscillation 
is more effective in reducing the peak vorticity than actuation frequency. The effect 
of frequency can be seen through the shape of the vorticity distribution: the vorticity 
peaks define the nodes of the standing wave as similarly observed in  
Fig. 12. Similar behavior is observed for Q-criterion (Fig. 19d). The effect of 
actuation significantly reduces the peak Q-criterion values when compared with the 
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baseline case. The results suggest that the development of the tip vortex has been 
altered due to actuation and that the rotational components of the vortex have been 
significantly reduced. Furthermore, the peak tangential velocity distribution shows 
a decrease in magnitude with actuation (Fig. 19b). The tip vortex follows the 
conservation of angular momentum, and therefore the decrease in vorticity results 
in an increase of the vortex core radius (Fig. 19e). The decrease in vorticity 
magnitude results in a greater radial influence of tangential velocity. The circulation 
distribution supports these findings, as the flux of vorticity is conserved for all 
combinations (Fig. 19c).  

Further research is required to understand which parameter (tangential velocity, 
vorticity, etc.) produces detrimental performance during vortex–fin interactions. 
Although the pitch oscillation motion was able to reduce the vorticity of the tip 
vortex, the result led to a radial increase of tangential velocity. It is possible that 
the increased area of influence will cause further performance detriment in vortex–
fin interactions. Future work is planned to investigate the performance of a 
downstream control surface in the wake of a pitch-oscillating canard. 

4. Conclusion 

Lift enhancement was observed for a 2-D airfoil and a 3-D canard undergoing ramp 
pitch oscillation at high frequency and amplitude. The actuated cases were able to 
generate higher lift coefficients at higher angles of attack, demonstrating successful 
implementation of dynamic stall. Although lift augmentation was observed, 
achieving the necessary amplitude of oscillation for such an effect could prove to 
be impractical. Furthermore, the dynamic effect was negligible at low angles of 
attack. In addition to lift enhancement, the effect of pitch oscillation was studied as 
a possible way to mitigate the tip vortex. The time-averaged flow solution of the 
actuated cases demonstrated a decrease in vorticity magnitude, TKE, Q-criteria, 
and tangential velocity. However, the radial influence of the vortex was increased 
due conservation of angular momentum. Additional work investigating the effect 
of the altered vortex on the performance of a control surface farther downstream is 
required and will be pursued.
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